Network Modeling Identifies Molecular Functions Targeted by miR-204 to Suppress Head and Neck Tumor Metastasis
نویسندگان
چکیده
Due to the large number of putative microRNA gene targets predicted by sequence-alignment databases and the relative low accuracy of such predictions which are conducted independently of biological context by design, systematic experimental identification and validation of every functional microRNA target is currently challenging. Consequently, biological studies have yet to identify, on a genome scale, key regulatory networks perturbed by altered microRNA functions in the context of cancer. In this report, we demonstrate for the first time how phenotypic knowledge of inheritable cancer traits and of risk factor loci can be utilized jointly with gene expression analysis to efficiently prioritize deregulated microRNAs for biological characterization. Using this approach we characterize miR-204 as a tumor suppressor microRNA and uncover previously unknown connections between microRNA regulation, network topology, and expression dynamics. Specifically, we validate 18 gene targets of miR-204 that show elevated mRNA expression and are enriched in biological processes associated with tumor progression in squamous cell carcinoma of the head and neck (HNSCC). We further demonstrate the enrichment of bottleneckness, a key molecular network topology, among miR-204 gene targets. Restoration of miR-204 function in HNSCC cell lines inhibits the expression of its functionally related gene targets, leads to the reduced adhesion, migration and invasion in vitro and attenuates experimental lung metastasis in vivo. As importantly, our investigation also provides experimental evidence linking the function of microRNAs that are located in the cancer-associated genomic regions (CAGRs) to the observed predisposition to human cancers. Specifically, we show miR-204 may serve as a tumor suppressor gene at the 9q21.1-22.3 CAGR locus, a well established risk factor locus in head and neck cancers for which tumor suppressor genes have not been identified. This new strategy that integrates expression profiling, genetics and novel computational biology approaches provides for improved efficiency in characterization and modeling of microRNA functions in cancer as compared to the state of art and is applicable to the investigation of microRNA functions in other biological processes and diseases.
منابع مشابه
Molecular targets of pomegranate (Punica granatum) in preventing cancer metastasis
Metastasis is the primary cause of mortality and morbidity among cancer patients and accounts for about 90% of cancer deaths. The most common types of treatment for cancer metastasis are chemotherapy and radiotherapy. However, such therapy has many serious side effects that could diminish the quality of life in patients. There is increased appreciation by the scientific community that natural c...
متن کاملBioinformatics identification of miRNA-mRNA regulatory network contributing to lung cancer invasion
Background: Over the past 15 years, significant insights have been gained into the roles of miRNAs in cancer. In various cancers, miRNAs can act as oncogenes, tumor suppressors, or control the metastasis process by modulating the expression of numerous target genes. This study is aimed at determining molecular network of miRNA-mRNA regulating lung cancer invasion, by bioinformatics approaches. ...
متن کاملHistological and Pathological Assessment of miR-204 and SOX4 Levels in Gastric Cancer Patients
Gastric cancer is one of the most common cancers and the efficient therapeutic methods are limited. Further study of the exact molecular mechanism of gastric cancer to develop novel targeted therapies is necessary and urgent. We herein systematically examined that miR-204 suppressed both proliferation and metastasis of gastric cancer AGS cells. miR-204 directly targeted SOX4. In clinical tissue...
متن کاملRegulation of ITGA3 by the anti‐tumor miR‐199 family inhibits cancer cell migration and invasion in head and neck cancer
For patients with head and neck squamous cell carcinoma (HNSCC), survival rates have not improved due to local recurrence and distant metastasis. Current targeted molecular therapies do not substantially benefit HNSCC patients. Therefore, it is necessary to use advanced genomic approaches to elucidate the molecular mechanisms underlying the aggressiveness of HNSCC cells. Analysis of our microRN...
متن کاملMicroRNA-204-5p inhibits invasion and metastasis of laryngeal squamous cell carcinoma by suppressing forkhead box C1
Background and aim: Understanding the molecular biological mechanisms underlying laryngeal squamous cell carcinoma (LSCC) invasion and metastasis is crucial for diagnosis, treatment, and prognosis. We aimed to examine the expression of the tumor suppressor microRNA-204-5p (miR-204-5p) and its target gene, forkhead box C1 (FOXC1), in human LSCC and explore their roles in the malignant behaviors ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2010